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GAS-DYNAMIC ACCELERATION OF IONS IN AN INHOMOGENEOUS 

MAGNETIC FIELD 
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i. Introduction. The basic features of gas-dynamic acceleration of ions in a homo- 
geneous magnetic field were deduced in [1-4], wherein the existence of a Debye discon- 
tinuity was indicated, and self-similar solutions constructed, permitting description of 
ion acceleration for "steplike" application of the accelerating voltage. The form of the 
potential well for oscillating electrons found in [2] is shown in Fig. i. The behavior of 
the potential at the Debye discontinuity is time-independent, while in the region ~ < #D 
the width of the well increases linearly with time. 

As was shown in [3, 4], the efficiency of ion acceleration depends significantly on 
the thickness of the anode foil. Therefore it is desirable to select the foil such that the 
electrons transfer their energy to the accelerated ions significantly more rapidly than 
they lose energy to the foil. However reduction in foil thickness leads not only to in- 
creased ion acceleration efficiency, but also to a reduction in angular scattering of elec- 
trons within the foil, which finally leads to cutoff of the diode and a reduction in ion 
current density [4]. 

In order to weaken the corresponding diode cutoff limitation and increase the efficiency 
of energy transfer to ions [3] proposed a method of gas-dynamic acceleration of ions in an 
inhomogeneous magnetic field, of high level in the diode region, but weak in the acceleration 
region (Fig. 2). An electron beam with supercritical current is injected into the drift 
chamber between the sandwich of foils A and F, the space between which is filled by a 
neutralizing plasma. Under such conditions a large portion of the electrons injected into 
the chamber are reflected and begin to oscillate between the real cathode and a "virtual 
cathode" which appears in the drift chamber beyond foil F. As a result a dense cloud of 
oscillating electrons is formed near foils A and F. Under certain conditions the electrons 
may produce on the surface of foil F, located in the weak magnetic field region, a layer of 
plasma P, which serves as an ion source. Under the action of the electric field a cloud 
of ions is extracted from this plasma, and compensating the space charge of the oscillating 
electrons, is accelerated along the chamber. 

The present study will evaluate the method of gas-dynamic acceleration of ions in an 
inhomogeneous magentic field proposed in [3] in two variants - a strongly scattering and 
nonscattering foil F. In the first variant the presence of the inhomogeneous magnetic field 
leads to an increase in ion current related to increase in the flux area in the acceleration 
region, while in the second the increase in current is insignificant, but nevertheless the 
efficiency of ion acceleration is increased, because all the energy of the oscillating 
electrons in the accelerated region will be included in a longitudinal degree of freedom. 
This fact leads to an increase in the rate of expansion of the plasma synthesized from 
ions and oscillating electrons. Because of this increase in the mean rate of plasma ex- 
pansion the efficiency of acceleration increases also. 

2. Oscillating Electron Distribution Function. We will consider ion acceleration for 
the case where the anode foil is strongly scattered and foil F is superthin. The thickness 
of the anode foil is then such that the following relationships are satisfied: 
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(O2>>>6W/W>>d/cx; ( 2 . 1 )  

<O ~ ) >> (?m/M)'/t  ( 2 . 2 )  

Here X = i + W/me 2 is the relativistic beam factor; W is the energy of the original electron 
beam; <82>, 6W are the mean square of the scattering angle and the mean electron loss for 
normal incidence on the anode foil; �9 is the duration of the accelerating impulse; d is the 
distance between the cathode and foil F; M is the mass of the ions. Condition (2.1) implies 
that electrons captured in the Debye layer are retarded over a time t, much less than the 
duration of the accelerating pulse ~, as a result of which a steady-state electron distribu- 
tion function is established [3, 4]. When condition (2.2) is satisfied the electron distri- 
bution function within the diode is isotropic f(p, 8) = f(p). 

As for the foil F, its thickness is limited below bythe condition 

6W 1 << 6W, <O~> << 6W,16WR, ( 2 . 3 )  

where  <O~> and 5W~ a r e  t h e  mean s q u a r e  s c a t t e r i n g  a n g l e  and mean e n e r g y  l o s s  f o r  normal  
incidence of an electron on foil F; R = Hz/H0; H l is the field within the diode; H 0 is the 
field in the acceleration region. Condition (2.3) implies that the oscillating electron 
distribution function, while remaining isotropic within the diode, at R >> i becomes almost 
one-dimensional on the foil F: 

/ (p, %) = [/I (p),. < R-1/~ 

[ O, 01 > R -1/2 

(where 91 is the electron pitch angle on the foil F). 

The state of the oscillating electron cloud can be characterized by the distribution 
function of these electrons on the anode foil f(p). The kinetic equation for f(p) can be 
found from the condition of conservation of the longitudinal adiabatic invariant 

x 1 

I(p~ 0, t) = ~ qll (x ,p ,O)dx 
0 

w i t h  t h e  a d d i t i o n a l  c o n d i t i o n  q• = p s i n  O/R1, 2, which r e f l e c t s  t h e  f a c t  o f  c o n s t a n c y  o f  t h e  
transverse component of the particle momentum. Here x z is the coordinate of the right rota- 
tion point, the lower limit is replaced by zero, since we are considering times for which 
xz m d; p and e are the momentum and pitch angle of the electron on the anode foil; qll (x, p, e) 
is the longitudinal momentum of the electron at the point xl, 

q,~ (x~ p, O) = ( r  (x, p) - -  ~ ) ' /~ ;  

q ( x ,  p) i s  t h e  t o t a l  momentum o f  t h e  e l e c t r o n  a t  t h e  p o i n t  x ,  

- - m C j  . 

We note that in a self-similar solution the potential r depends on coordinate x and time 
t only in the combination x/t = $. Then for an electron with momentum p > PD the adiabatic 
invariant is a linear function of time I(p, 9, t) = tJ(p, e) [2], and the quantity 

e2 ] l / z  
po = 2me (U --  ~D). + ~ (U - -  q~D)~ J 
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is the limiting momentum at which an electron ejected along the normal to the foil surface 
is still retained within the Debye layer. For electrons with momentum p < PD I(p, 8, t) = 0, 
since x I = 0. 

In this case the kinetic equation for the distribution function has the form [4] 

J.~ (P) ~p + ] ~ (p) ; + 
,p 

t O~Wp2I 
p~. Op 

-- § (2 .4 )  

where 

. & ( p ) = . t  p , O =  T = p  7- ~ 
0 

J.~ (p) = ] Y (p,, O) siu 0 cos OdO. 
0 

The source Q describes the increase in number of particles within the cloud due to the beam: 

rib% 
Q = 4~p---- ~ 8 (p -- Po). 

Here n b is the beam density at the anode foil; P0 and v0 are the momentum and velocity of 
the electron corresponding to an accelerating voltage U: 

,o Po = 2meU + c~ ] ' ~'o = (p~..6.,n.~,).~!~.. 

Substituting J(p, O) in Eq. (2.5) and integrating the latter over 8, we find 

3 ~ /  2 t \ :  ] 
] ~ ( P ) = T  p '  d ~ ,  --W at ,~ 

0 

where ~z = xl/t, and $2 is defined by the equation q($2, P) = P R-1 /2"  
o b t a i n  

](p) = ~ e x p  l J ' p +  ~ ]  w-q~J 

Solving Eq. (2.4), we 

(2.6) 

(w(p) = J2(p)p 2 + 6Wp2), We will call attention to the fact that at p < PD l(p, 8, t) = 0 
so that f(p) = const/(p26W). The value of f(p) on the anode foil allows us to find the 
electron density at the point with potential r 

n (% H) = 2~ f f 
(p (q)) qdqd~H �9 (q2_ ~H//2 (~ = q• ( 2 . 7 )  

We note that according to Eq. (2.6) the density of the oscillating electron cloud is 
proportional to the electron beam density on the anode foil, 

n(% H) = nbVf% H),  (2 .8 )  

where the  d imens ion l e s s  f u n c t i o n  v(r  H) i s  independent  of  n b. Knowing the  f u n c t i o n  n( r  H), 
the  s e l f - s i m i l a r  s o l u t i o n  of  t he  equa t ions  d e s c r i b i n g  gas-dynamic a c c e l e r a t i o n  of  t he  ions 
can be f u l l y  c o n c r e t i z e d .  

3. De te rmina t ion  of  Ion Flux Paramete r s .  In one-d imens iona l  f o r m u l a t i o n  the  problem of  
ion a c c e l e r a t i o n  in s e l f - s i m i l a r  v a r i a b l e s  i s  d e s c r i b e d  by the  system of  equa t ions  [1] 

dn.:. .dr (V ~.dv e dqD (v--~)~§ n~ = O, .)~ +~=0~ (3.1) 
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where v, n are the velocity and density of ions. 
the cloud the ion density is equal to the electron density: 

n ==: n ( %  t10). 

System (3 .1 ) ,  (3 .2)  must be supplemented by boundary condi t ions  [1] 

u u 

From the condition of quasineutrality of 

(3.2) 

(3.3) 

the first of which defines the electron velocity beyond the Debye discontinuity, while the 
second indicatesthe equality to zero of the electric field in the homogeneous flux region 
beyond the discontinuity. 

For a specified beam density n b and known function v(~, H) system (3.1)-(3.3) completely 
defines the solution of the gas-dynamic portion of the problem. The major difficulties lie 
in self-consistent search for the function v(~, H): it is determined by the electron 
distribution function, which in turn is determined by the dependence of the potential on ~. 
In the majority of cases the corresponding probem can only be solved numerically by the 
successive approximation method: specification of the potential well form ~(~) in the zeroth 
step, use of Eqs. (2.6), (2.8) to calculate the distribution function f(p) and the electron 
density nbv(r H). Knowing the function ~(r H), from system (3.1)-(3.3) we obtain the 
following approximation for ~($). Repeating this procedure several times, we can construct a 
sufficiently accurate expression for f(p) and v. As a result, a self-consistent solution of 
the problem is obtained, defined to the accuracy of a scale factor nb, which is found by 
solution of the Poisson equation within the diode. 

In addition there is a case in which the solution can be determined analytically, this 
being the case of nonrelativistic electrons, u - 1 << i. We will now consider the situation 
in which R >> i, and the electron energy losses in the anode foil are significantly less than 
the loss of electron energy expended in ion acceleration: 

5W 
-~" << (~-) ' /~  (3.4) 

At R >> i Jl(P) = 2Jz(P) = J(P, 0 = 0). In the nonrelativistic case p26W is independent 
of electron energy [4], so that the distribution function has the form 

[ nbvo 
~ 2nJ oPD 

I (P) = I nj___~ 

O<p<pD, 

PD<P<Po 
(3.5) 

(J0 = J(P0, 8 = 0)). Substituting the distribution function obtained into Eq. (2.7), we 
calculate the density of the oscillating electron cloud in the acceleration region 

i no~;1/2,,~ 
n Ho) = 2 (, - ] 

J': 
(3.6) 

where , = #/U is the dimensionless potential; no = 2nbW/JoR. The quantity n o can be deter- 
mined by use of the fact that in view of the quasineutrality of the flux of the beam current 
density enbv 0 is equal to en,v,R, the density of the ion current, where n, and v, are the 
:ion density and velocity at ~ = ~D" Thus we arrive at the result 

n b 

]i/~ " n0 
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We determine the potential discontinuity beyond the Debye layer from boundary conditions 
(3.3): 

5 ( l  - -  , ~ 2 )  _ 2 (l  - -  ~D) 3/~ = i 5 ~ '  (t - -  ~D). ( 3 . 7  ) 

S u b s t i t u t i n g  t h e  e x p r e s s i o n  n ( ~ ,  H0) i n  s y s t e m  ( 3 . ! ) ,  we f i n d  t h e  s e l f - s i m i l a r  s o l u t i o n  i n  
t h e  r e g i o n  o f  t h e  r a r e f a c t i o n  wave  Vma x > ~ > ~ ,  ( s e e  F i g .  1 f o r  n o t a t i o n ) :  

n = ? /O(Uraax -- ~)/2vo,- v = (/;max 3C ~)/2, ( 3 . 8 )  

= (v~,  - U:14v~. 

(2w'),.. �9 . .  H e r e  v o =  \-~-! ;Vmax -- u o [(1:-- ,D) '/~- q- ,g-2]; ~,__V0[( { __,D)I/. 2 , ~ : ] .  The v a l u e s  o f  n.lr and v..r i n  t h e  

constant flow region are determined by merging this flow with the rarefaction wave: 

V, ---- (Vmax A- ~,)/2, n, -----ino (V,nax- ~,)/2Vo" ( 3 . 9 )  

Solving the alegrbaic system (3.7)-(3.9), we find all numerical parameters not yet defined: 

~D ---- 0,0/iT, ~, = 0,755~ gmax = 1.19, v, = 0,976, n, = 0,217. (3.10) 

Thus the problem of gas-dynamic acceleration of ions has been completely solved, and to 
determine the beam density n b we solve the Poisson equation within the diode 

d ' r  &rte [ % 1 dz~ . . . .  77"[, ~/= + n(% H ~ ) -  ]' ~ [':'=~ = 0'- drcl~dx t~=,o =0 , .  al, l~=a = t , ( 3 . 1 1 )  

where the first term on the right considers the electron beam charge density and the second 
considers the oscillating electron charge density. The electron cloud density in the diode 

ini[@l/~_(t_,)l/.2arctg(t@ )1/~], 
o 1/2 

I arctg {*--*D/1/21 (* --  @D)3/21 

@ < ~;D, 

( 3 . 1 2 )  

(n I = 2n0R). Substituting n(~, H I) in Eq. (3.11) and integrating over ~, we obtain n b = 
0.256nb0, where nb0 is the electron beam density determined by the "3/2" law. 

An important characteristic of the acceleration process is the fraction of energy 
transferred to ions by the beam electrons: 

-~ Jnv dz (3.13) 
0 

= .bW~ V 

In the case considered the efficiency of acceleration n = 0.93. We note that for a nonrela- 
tivistic diode in a homogeneous magnetic field n = 0.77, while n b = 0.234nb0 [3, 4]. The 
electron energy loss in the foil is then significantly greater than the energy conveyed to 
accelerated ions by the beam electrons: 

6W (vm~! 2 (3.14) 

for R >> I the problem of gas-dynamic acceleration of ions can also be solved analytically. 
In this case the efficiency will be 

= 0,t95~--~\~-1 �9 

We note that this value is significantly greater than the efficiency of ion acceleration in 
a homogeneous magnetic field: 
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The beam density n b for a diode located in an inhomogeneous magnetic field will be the 
same as that of a diode in a homogeneous magnetic field when condition (3.14) is satisfied. 

With an arbitrary relationship between 6W/W and (ym/M)i/a for R ~ i the solution of the 
problem can only be constructed numerically by the method of successive approximations. We 
will present the results of numerical calculations performed for conditions (2.1)-(2.3). As 
was noted above, the distribution function, while remaining isotropic in the diode, becomes 
almost one-dimensional in the acceleration region for R >> i, with the major fraction of the 
oscillating electron energy is contained in the longitudinal degree of freedom. This fact 
leads to an increase in the mean rate of expansion of the ion flux, and consequently, an 
increase in the efficiency of ion acceleration. 

The dependence of ion acceleration efficiency q on compression of the magnetic field R 
at ~ = 3, 6W/mc 2 = 4"i0 -a is shown in Fig. 3. In this case the increase in diode current 
with increase in R is insignificant; thus, at R = 5 the increase in current as compared to 
R = i comprises about 10%. 

We will note that the results obtained in this section are valid for 

R < < ( M / ~ m ) V  ~. (3.15) 

The limitation on R is related to the following fact. Because of expansion of the 
potential well electrons with a momentum p > PD, leaving the anode foil at an angle 0 % ~/2 
lose a portion of their longitudinal momentum and no longer return to the diode. Since in 
deriving the kinetic equation these electrons were not considered, it is necessary that 
they be low in number. It can easily be seen that this will be the case when inequality 
(3.15) is satisfied. 

4. Ion Acceleration in a Diode with Strongly Scattering Foil F. We will present results 
of a calculation of gas-dynamic acceleration of ions for the case where the anode foil is 
superthin and the foil F is strong scattering: 

~ d 
<oh >>-W >> ~-,, (4.1) 

(h"V <0~> .~ max ~,\"MI. '. << 

Condition (4.1) indicates that elastic scattering of electrons in foil F is a very rapid 
process, so that the oscillating electron distribution function is isotropic in both the 
diode and the acceleration region. Therefore all results involving the form of the spectrum 
and the level of ion acceleration efficiency remain the same as in [4], which considered 
ion acceleration in a homogeneous magnetic field. 

However the presence of an inhomogeneous magnetic field leads to a significant reduc- 
tion in the density of the electron cloud within the diode, related to increase in the area 
of the flux in the ion acceleration region. Decrease in the oscillating electron cloud 
density in turn leads to an increase in the beam current Jb, and finally, to an increase in 
:[on current. 

For a nonrelativistic diode y -- I << i, the dependence of diode current on R was found 
in  [3] : 

j_~b = i 4 , 5 s 8 / 4  ( l  - -  0 , 8 s i / ' ) %  
]bo '~ 

F / m \ 1/~ 6W1 ] 
Here s__-i~[i,171~ ) +7,5--~j; ; Jb0 is the diode current density defined by the "3/2" law. 

For a relativistic diode the solution can only be obtained by numerical calculations using 
the method presented in Section 3. The dependence of jb/Jb 0 on R at 7 = 3, 6Wz/mc 2 = 4.10 -3 
is shown in Fig. 4, where Jb0 is the diode current determined in analogy to the "3/2" law for 
a relativistic diode. As is evident from Fig. 4, the presence of an inhomogeneous magnetic 
field leads to a significant increase in diode current density. 
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The results obtained above are in good agreement with the experimental results pre- 
sented in [5]. It should be understood that under real conditions one does not deal with a 
strictly "step" voltage form, so that comparison of the presult results with experimental 
data can only be qualitative in character. Another possible limitation on the applicability 
of the proposed treatment is that in the present study the possibility of reduction of the 
diode impedance by neutralization of the diode gap electron charge by the charge of ions 
emitted from the inner surface of the ion foil was not considered. 

The author is indebted to D. D. Ryutov for his numerous observations during the course 
of the study. 
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